A Review on Forecasting Crime against women in India using Machine Learning Approaches

نویسندگان

چکیده

Crimes against women have become a global problem, and many governments are striving to curb them. The National Crime Records Bureau indicates that crimes risen substantially. In June, NCW received the most crime complaints in eight months. Indian government is interested finding solution this problem promoting social progress. Each year, reports generate vast amount of data, which collated. This information may help us evaluate anticipate criminal behavior reduce activity. Data analysis involves assessing, cleansing, manipulating, modelling data draw conclusions enhance decision-making. research uses supervision learning analyze women's examination. police department reports. Anomalies, invalid locations, longitudes, scopes were created advance. study was meant breakdown by kind district produce heat maps. results decision makers predict prevent women. Applying Find geographical hotspot crime, such as murder, rape, sexual assault, beating, dowry threats husband or his family, immoral trafficking, stalking, etc.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches

Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...

متن کامل

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

Forecasting the Tehran Stock market by Machine ‎Learning Methods using a New Loss Function

Stock market forecasting has attracted so many researchers and investors that ‎many studies have been done in this field. These studies have led to the ‎development of many predictive methods, the most widely used of which are ‎machine learning-based methods. In machine learning-based methods, loss ‎function has a key role in determining the model weights. In this study a new loss ‎function is ...

متن کامل

Machine Learning Approaches to Energy Consumption Forecasting in Households

We consider the problem of power demand forecasting in residential micro-grids. Several approaches using ARMA models, support vector machines, and recurrent neural networks that perform one-step ahead predictions have been proposed in the literature. Here, we extend them to perform multi-step ahead forecasting and we compare their performance. Toward this end, we implement a parallel and effici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International journal of scientific research in computer science, engineering and information technology

سال: 2022

ISSN: ['2456-3307']

DOI: https://doi.org/10.32628/cseit228666